

Electrochemical Methods

Dr Ibrahem MA Hasan

Conductometry

Introduction

- <u>Conductometry:</u> is the simplest of the electroanalytical techniques; by Kolthoff in 1929.
- <u>Conductivity:</u> is the ability of the medium to carry electric current.
- **Conductors:** are either metallic (flow of electrons) or electrolytic (movement of ions).
- Conductance of electricity: migration of positively charged ions towards the cathode and negatively charged ones towards the anode.
- Current is carried by all ions present in soln.
- Conductance depends on the number of ions in soln.

Introduction

\checkmark Ohm's law: i = V/R

Where **R**: resistance in ohm, **V**: potential difference in volt and **i**: current in ampere

Conductance is the reciprocal of the resistance (G = 1/R) and is measured by conductometer.

✓ Units of Conductance are siemens (S), $Ohm^{-1}(\Omega^{-1})$ or mhos.

 \checkmark Total conductance of a solution is directly proportional to the sum of the n individual ion contributions.

 $G_{total} = \sum c_i \Lambda_{0,i}$

 Λ_0 : molar conductance at infinite dilution

Specific conductivity (κ)

✓ Conductance G is directly proportional to the cross section area A and is inversely proportional to the length 1 of a uniform conductor

Thus, $\mathbf{G} \propto \mathbf{A}/\mathbf{l}$ so $\mathbf{G} = \kappa(\mathbf{A}/\mathbf{l})$

where κ is the *conductivity* or *specific conductivity* (the conductance when A and I are numerically equal).

✓ When units of A and 1 are cm² and cm, respectively, κ is: *"the conductance of a cube of liquid one centimeter on a side" its unit is* $S \cdot cm^{-1}$ *or ohm*⁻¹ cm^{-1}

✓ Since G = 1/R then, $1/R = \kappa(A/I)$

✓ Thus, $\kappa = 1/R(l/A) = k/R$

where $\mathbf{k} = \mathbf{l}/\mathbf{A}$ is the cell constant which can be determined by measuring the resistance of a cell filled with a solution of known conductivity 5

Molar conductance (Λ)

- Molar conductance: $\Lambda = 1000 \text{ k/c}$
- where c is the molar concentration, that is expressed in mol·dm⁻³. 1000 is the factor arising from 1 dm³ = 1000 cm³.
- Thus, the molar conductance is expressed in $S \cdot cm^2 \cdot mol^{-1}$
- Molar conductance: is the conductance of a solution of one mole of solute (with no respect of its volume) contained between two electrodes placed 1 cm apart."

Equivalent conductance (Λ_{eq})

- It is defined as: $\Lambda_{eq} = 1000 \kappa/c_{eq}$ where c_{eq} is the equivalent concentration, that is expressed in equiv.dm⁻³.
- It is the conductance of a soln of one-gram equivalent of solute contained between two electrodes 1 cm apart.
- For a strong electrolyte the molar and/or equivalent conductances are roughly constant.
- They decreasing to some extent owing to changes in mobilities with increasing concentration but approaching a finite value Λ_0 at infinite dilution (it is used for comparison purposes).
- The magnitude of Λ_0 is determined by the charge, size and degree of hydration of the ion.

Λ_0 values of various ions at 25°C

- H⁺ and OH⁻ ions have by far the largest equivalent conductances.
- H_2O has a very low conductivity,
- So, acid-base titrations yield the most clearly defined equivalence points by conductometry.

Cations	(Λ ₀)	Anions	(Λ ₀)
H⁺	350	OH	198
Na ⁺	50.1	CI-	76
K +	74	NO ₂ -	71
NH4 ⁺	73	CH ₃ COO ⁻	41
Ag⁺	62	CH ₃ CH ₂ COO ⁻	36
¹ / ₂ Ba ²⁺	64	¹ / ₂ SO ₄ ²⁻	80
Li+	38.7	Br-	78.1
Pb ²⁺	73	- F	76.8
Ca ²⁺	59.5	NO ₃ -	71.44
Sr ²⁺	59.46	CIO ₄ -	67.32
Cu ²⁺	54	CIO ₃ -	64.58
Fe ²⁺	54	BrO ₃ -	55.78
Mg ²⁺	35.06	IO ₄ -	54.4
Zn ²⁺	52.8	CH ₃ COO ⁻	40.9

Λ_0 values of various ions at 25°C

Example:

Calculate the equivalent conductance at infinite dilution of:

1) H_2SO_4 2) Propionic acid

3) Propionic acid from (Λ_0) of HCl (426), sodium propionate (85.9) and NaCl (126.4).

Solution:

- 1) Equivalent conductance (Λ_0) of H₂SO₄ = (2 x 350) + (2 x 80) = <u>860</u>
- 2) Λ_0 for propionic acid = 350 + 36 = 386
- 3) $CH_3CH_2COONa + HCl = NaCl + CH_3CH_2COOH$ (85.9) (426) (126.4) (?) $\Lambda_o(C_2H_5CO_2H) = \Lambda_o(HCl) + \Lambda_o(C_2H_5CO_2Na) - \Lambda_o(NaCl)$ = 426 + 85.9 - 126.4 = 385.5

No significant difference between results in 2 & 3.

Factors affecting conductance

1. Temperature:

(1°C increase in temperature causes 2% increase in conductance).

2. Nature of ions: Size, molecular weight and number of charges.

3. Concentration of ions:

As the number of ions increases, the conductance increases.

4. Size of electrodes:

Conductance is directly proportional to the cross sectional area (A).

Conductivity measurements 1. Electrodes

Two parallel platinized Pt foil electrodes or Pt black with electrodeposited a porous Pt film which increases the surface area of the electrodes and further reduces faradaic polarization.

2. Primary standard solutions

Primary standard KCl solution, at 25°C, 7.419 g of KCl in 1000g of solution has a specific conductivity of 0.01286 Ω^{-1} /cm.

Conductivity Cell and Wheatstone Bridge

3. Conductivity Cell:

Avoid the change of temperature during determination

4.Wheatstone bridge:

Applications of conductometry

It can be used for the determination of:

- ✓ Solubility of sparingly soluble salts
- \checkmark Ionic product of water
- ✓ Basicity of organic acids
- ✓ Salinity of sea water (oceanographic work)
- \checkmark Chemical equilibrium in ionic reactions
- \checkmark Conductometric titration
- \checkmark In refinary industries.
- ✓ Estimation of polyelectrolytic solution.
- ✓ Biotechnology.
- \checkmark Microbiosensors for environmental monitoring.

Conductometric titrations

Is the determination of the end point of a titration by means of conductivity measurements.

Types of conductometric titrations

- \checkmark Acid-base titration
- \checkmark Precipitation titration
- ✓ Replacement titration
- ✓ Redox (oxidationreduction) titration
- ✓ Complexometric titration

1) Acid-base titrations

Titration of strong acid with (a) strong base (e.g. HCl with NaOH) (b) weak base (e.g. HCl with NH₄OH)

Titration of weak acid with

(c) strong base (e.g. CH₃COOH with NaOH)
(d) weak base (e.g. CH₃COOH with NH₄OH)

2) Precipitation titrations

 $[\mathbf{K}^+ + \mathbf{Cl}^-] + [\mathbf{Ag}^+ + \mathbf{NO}_3^-] \rightarrow \mathbf{AgCl} + [\mathbf{K}^+ + \mathbf{NO}_3^-]$

3) Replacement titrations

 (a) Salt of strong acid and weak base vs. strong base
 NH₄Cl + NaOH → NH₄OH + NaCl

- (b) Salt of strong base and weak acid vs. strong acid
- $\begin{array}{l} CH_{3}COONa + HCl \rightarrow \\ CH_{3}COOH + NaCl \end{array}$

4) Redox titration

Titration of ferrous ions with dichromate ions: $6 \operatorname{Fe}^{2+} + \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}^+ \rightarrow 6 \operatorname{Fe}^{3+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}_7^{3-} + 14 \operatorname{H}_7^{3-} + 14 \operatorname{$

5) Complexometric titration

Eg: KCl vs. $Hg(ClO_4)_2$

Non-aqueous titrations can also be done using conductometry.

Eamples:

- a) Titration of weak bases vs. perchloric acid in dioxan-formic acid.
- b) Titration of weak organic acids in methanol vs. tetramethyl ammonium hydroxide in methanolbenzene.

Advantages of conductometric titrations

- \succ No need of indicator
- Colored or dilute solutions or turbid suspensions can be used for titrations.
- Temperature is maintained constant throughout the titration.
- End point can be determined accurately and errors are minimized as the end point is being determined graphically.

Disadvantages of conductometric titrations

- > Non specificity
- ➢ Interference of high conc. of other electrolytes.

